l.
2

EGO gliders
user’s manual 
NetCDF conventions and reference tables

Version 1.0
December 12th, 2012
[image: image1.jpg]



Table of contents 
1EGO gliders user’s manual


2Table of contents


4History


51
EGO gliders data-management principles


51.1
About EGO


51.2
About this document


51.3
EGO data management structure and data access


51.4
User Obligations


61.5
Disclaimer


61.6
Further Information Sources and Contact Information


61.7
Useful links, tools


61.7.1
EGO matlab scripts to generate NetCDF files


61.7.2
EGO file format checker


71.8
Open issues, known problems


71.8.1
Warning on CTD thermal lag errors


71.8.2
Time sampling issues on Slocum gliders


82
Gliders NetCDF data format version 1


82.1
Data file dimensions


102.2
Global attributes


152.3
Variables


152.3.1
Coordinate variables


172.3.2
Coordinate quality control variables


172.3.3
Profile, phase and direction management


182.3.4
Positioning method


192.3.5
Data variables


222.3.6
History information


242.4
Gliders metadata


242.4.1
Dimensions and definitions


242.4.2
Glider characteristics


262.4.3
Glider deployment information


272.4.4
Glider sensor information


282.4.5
Glider parameter derivation and calibration information


302.5
Gliders technical data


313
Reference tables


313.1
Reference tables 1: data type


313.2
Reference table 2: Variable quality control flag scale


313.2.1
Reference table 2.2: cell methods


323.3
Reference table 3: EGO parameter dictionary


323.3.1
Convention for parameter names, standard names and units


323.3.2
EGO parameter list


333.3.3
References


333.4
Reference table 4: Data Assembly Center Codes


333.5
Reference table 5: Location classes


343.6
Reference table 7: History action codes


343.7
Reference table 8: Instrument types


343.8
Reference table 9 : Phases of the glider trajectory


343.9
Reference table 10 : Positioning method


353.10
Reference table 11: QC test binary IDs


353.11
Reference table 12: History steps codes


363.12
Reference table 19 : Data mode


363.13
Reference table 20 : Sensor mount characteristics


373.14
Reference table 21: Sensor orientation characteristics


373.15
Reference table 22: type of glider


384
Using the History section of the EGO netCDF Structure


384.1
Recording information about the Delayed Mode QC process


384.2
Recording processing stages


394.3
Recording QC Tests Performed and Failed


404.4
Recording changes in values


425
GDAC organization


425.1
File naming convention


435.2
Index of glider deployments files


456
Data distribution


456.1
DAC to GDAC data distribution


456.2
DAC to GTS data distribution


467
Glossary, definitions


467.1
Observatory


467.2
Deployment


467.3
Glider


467.4
Sensor


467.4.1
Parameter measured by the sensor


467.4.2
Calibration of the parameter measured by the sensor


467.5
Principal Investigator (PI)


467.6
Global Data Assembly Centre (GDAC)


477.7
Data Assembly Centre (DAC)



History
	Version 
	Date 
	Comment 

	0.9
	08/10/2012 
	TC: initialization of the document based o EGO user’s manual version 1.2

	0.99
	15/10/2012
	TC : updates after Paris Groom meeting
§2.3.3 : Profile, phase and direction management

§2.3.4 : Positioning method 

§2.3.5 : add a coordinates attribute to <PARAM> 

§2.4.4 : Configuration parameters

§2.4.6 : calibration : note on derived parameters such as PSAL, note on pre-deployment calibrations

§2.5 : Gliders technical data

§5 : Glossary, definitions

	0.999
	23/10/2012
	GB : use TIME:units = “days since 1970-01-01T00:00:00Z”;  instead of 1950 for compatibility with old version software such as ferret

	0.9999
	12/12/2012
	TC : use TIME variable (seconds since 01/01/1970) and JULD (days since 01/01/1950)
Remove <PARAM>_dm

Remove uncertainty as an attribute

Remove qc_indicator_attribute

Remove EGO glider catalogue

Remove configuration parameters chapter

DERIVATION instead of CALIBRATION
Add a data distribution chapter 6
Add a chapter 1.8 on CTD thermal lag error

Manage technical data as standard variables


  

1 EGO gliders data-management principles
1.1 About EGO 

Everyone’s Gliding Observatories - EGO is dedicated to the promotion of the glider technology and its applications. 

The EGO group promotes glider applications through coordination, training, liaison between providers and users, advocacy, and provision of expert advice. 

We intend to favor oceanographic experiments and the operational monitoring of the oceans with gliders through scientific and international collaboration. We provide news, support, information about glider projects and glider data management, as well as resources related to gliders. 

All EGO data are publicly available. More information about the project is available at: http://www.ego-network.org 
1.2 About this document 

This document specifies the NetCDF file format of EGO-gliders that is used to distribute glider data, metadata and technical data. It documents the standards used therein; this includes naming conventions as well as metadata content.  
It was initiated in October 2012, based on OceanSITES, Argo and ANFOG user's manuals.

1.3 EGO data management structure and data access 

The data flow within EGO is carried out through three organizational units: PIs, DACs and GDACs.
The Principal Investigator (PI), typically a scientist at a research institution, maintains the observing platform and the sensors that deliver the data. He or she is responsible for providing the data and all auxiliary information to a Data Assembly Center (DAC). 
The DAC assembles EGO-compliant files from this information and delivers these to the two Global Data Assembly Centers (GDACs), where they are made publicly available. 
The GDAC distributes the best copy of the data files. When a higher quality data file (e.g. calibrated data) is available, it replaces the previous version of the data file.
The user can access the data at either GDAC, cf. section “GDAC organization”. 

1.4 User Obligations

A user of EGO data is expected to read and understand this manual and the documentation about the data as contained in the “attributes” of the NetCDF data files, as these contain essential information about data quality and accuracy.
A user of EGO data must comply with the requirements set forth in the attributes “distribution_statement” and “citation” of the NetCDF data files.
Unless stated otherwise, a user must acknowledge use of EGO data in all publications and products where such data are used, preferably with the following standard sentence:
“These data were collected and made freely available by the international EGO project and the national programs that contribute to it.”

1.5 Disclaimer

EGO data are published without any warranty, express or implied.
The user assumes all risk arising from his/her use of EGO data.
EGO data are intended to be research-quality and include estimates of data quality and accuracy, but it is possible that these estimates or the data themselves contain errors.
It is the sole responsibility of the user to assess if the data are appropriate for his/her use, and to interpret the data, data quality, and data accuracy accordingly.
EGO welcomes users to ask questions and report problems to the contact addresses listed in the data files or on the EGO internet page.
1.6 Further Information Sources and Contact Information

· EGO website: http://www.ego-network.org 
· For further information about the benefits and distributing data onto the GTS, please refer to: http://www.jcommops.org/dbcp/gts or contact the EGO Project Office on projectoffice@EGO.org.

· For information about unique numbering of EGO Gliders and Gliders on the GTS see: http://www.wmo.int/pages/prog/amp/mmop/wmo-number-rules.html
1.7 Useful links, tools
1.7.1 EGO matlab scripts to generate NetCDF files

These scripts, ideally one per glider type will be freely available.

1.7.2 EGO file format checker

The EGO file format checker is a java software freely available at:

http://projets.ifremer.fr/coriolis/Observing-the-ocean/Observing-system-networks/EGO/Access-to-data 

1.8 Open issues, known problems

1.8.1 Warning on CTD thermal lag errors

The glider CTD data may be affected by a thermal lag error problem. In area with strong thermal gradient such as in the thermocline, the salinity may be overestimated.

This problem is not detected by the existing real-time quality controls.

A new real-time QC test is under study to flag as probably bad (but correctable) the salinity data affected by this problem.

In parallel, method to correct this problem is under study.
1.8.2 Time sampling issues on Slocum gliders

Slocum gliders are equipped with 2 central units (CPU): a navigation CPU and a scientific CPU (to manage sensors).

Observations are reported either from the navigation CPU or from the scientific CPU.

Observations are time stamped with the CPU clock.
Both clocks are not necessarily synchronized.

The time difference between navigation and scientific CPU is difficult to manage.

A time difference may result in observations with identical time stamps.

These problems may be identified in level 0 data files where no correction on time reference is performed.

In level 1 data files, these duplicate time samples are removed.
2 Gliders NetCDF data format version 1
EGO uses the NetCDF (network Common Data Form) system, a set of software libraries and machine-independent data formats. Our implementation of NetCDF is based on the community-supported Climate and Forecast (CF) specification, which supplies a standard vocabulary and some metadata conventions. 
EGO layers several more conventions above the CF standard. These are intended to make it easier to share in-situ data, to make it simpler for the GDACs to aggregate data from multiple sites, and to ensure that the data can be created and understood by the basic NetCDF utilities. 
· EGO includes standard terms for the short name of both coordinate and data variables (measurements). 
· File names are created using a standard, described in section 4.1. 
An EGO data file contains measurements such as temperature and salinity, continuously performed at different levels on a platform (e.g. glider), as well as meteorological or other parameters recorded at the site, derived variables associated with the site, and complete location,  time, and provenance information. 
The requirements are drawn almost exclusively from the NetCDF Style Guide: 
· Units are compliant with CF/COARDS/Udunits; 
· The time parameter is encoded as recommended by COARDS and CF;
· Parameters are given standard names from the CF table;
· Where time is specified as an attribute, the ISO8601 standard is used. 
For more information on NetCDF, Udunits, COARDS, CF and ISO8601 see: 
· NetCDF: http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html 
· Udunits: http://www.unidata.ucar.edu/software/udunits/ 
· COARDS: http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html 

· CF: http://cf-pcmdi.llnl.gov/ 
· ISO8601: http://en.wikipedia.org/wiki/ISO_8601 
Note on format version
Since October 2012, the EGO valid data format version is 1.0.
The User’s manual may be updated with clarifications, recommendations, additional optional attributes without changing the data format version.
2.1 Data file dimensions 

EGO glider data are recorded as time-series. The time dimension is the main dimension for an EGO glider data file.

	Name 
	Example 
	Comment 

	TIME
	TIME=unlimited 
	Number of time steps.

	DATE_TIME
	DATE_TIME = 14;


	This dimension is the length of an ASCII date and time value.

Date_time convention is : YYYYMMDDHHMISS

YYYY : year

MM : month

DD : day

HH : hour of the day (as 0 to 23)

MI : minutes (as 0 to 59)

SS : seconds (as 0 to 59)

Date and time values are always in universal time coordinates (UTC).

Examples : 

20010105172834 : January 5th 2001 17:28:34

19971217000000 : December 17th 1997 00:00:00

	STRING1024

STRING256
STRING64
STRING32
STRING16
STRING8
STRING4
STRING2
	STRING1024 = 1024;
STRING256 = 256; 

STRING64   =  64; 

STRING32   =  32;

STRING16   =  16;

STRING8     =   8;

STRING4     =   4;

STRING2     =   2;
	String dimensions from 2 to 1024.


2.2 Global attributes 

The global attribute section of a NetCDF file contains metadata that describes the contents of the file overall, and allows for data discovery. All fields should be human-readable, and should be of character type, not numeric, even if the information content is a number. EGO recommends that all of these attributes be used and contain meaningful information unless there are technical reasons rendering this impossible. However, files that do not at least contain the attributes listed as “mandatory” will not be considered EGO-compliant. In EGO, global attribute names are in lower-case letters (except “Convention”). 
Global attributes can be thought of as conveying five kinds of information: 
· What: what are the data in this dataset; 
· Where: the spatial coverage of the data; 
· When: the temporal coverage of the data; 
· Who: who produced the data; 
· How: how were the data produced and made available. 
The global attributes specification follows the recommendations of Unidata NetCDF Attribute Convention for Dataset Discovery, at:

 http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html 
	Name
	example
	definition

	WHAT 
	
	

	data_type 


	data_type=” EGO glider time-series data” 
	Type of data contained in the file. 

The list of acceptable data types is in reference table 1. 

Example: “EGO time-series data”
This attribute is mandatory. 

	format_version 


	format_version=”1.0” 
	File format version 

Example: “0.9”. 

This attribute is mandatory. 

	platform_code 


	platform_code=”pytheas” 
	Glider unique code within EGO project.

The use of lower case is recommended.
Only basic ASCII letters, numbers and “_” (no accent)
This attribute is mandatory. 

	date_update 
	date_update=”2006-04-11T08:35:00Z” 
	File update or creation date (UTC). See note on time format below. 

This attribute is mandatory. 

	wmo_platform_code 
	wmo_platform_code=”61864” 
	WMO (World Meteorological Organization) identifier. 

This platform number is unique within the EGO project. 

Example: “61864” for pytheas glider. 

	ices_platform_code
	ices_platform_code=”FFPY”
	Platform code assigned by ICES (International Council for the Exploration of the Sea)

	source 
	source=”Glider observation” 
	Method of production of the original data. For EGO data, use one of the following: 

“Shipborne observation”, “Glider observation” 

	history 
	history= “2008-12-10T09:35:36Z Written by MATLAB script seagliderFV.m v1.2

2010-12-07T10:11:00Z data calibrated, controlled and sent to DAC, Laurent Mortier ” 
	Audit trail for modifications to the original data. It should contain a separate line for each modification, with each line beginning with a timestamp, and including user name, modification name, and modification arguments. The time stamp should follow the format outlined in the note on time formats below. 

	data_mode 
	data_mode=”R” 
	Indicates if the file contains real-time, provisional, mixed or delayed-mode data. 

The list of valid data modes is in reference table 19. 

This attribute is mandatory.

	quality_index 


	quality_index=”excellent” 


	Code value valid for the whole dataset: 

 “unknown quality” 

“excellent” (no known problems, regular quality checking) 

“probably good” (occasional problems, validation phase) 

“extremely suspect”, frequent problems 

	references 
	references=”http://www.ego-network.org/ ” 
	Published or web-based references that describe the data or methods used to produce it. Include a reference to EGO and a project-specific reference if appropriate. 

	comment
	comment=”This deployment was performed during the Latex exercise” 
	Miscellaneous information about the data or methods used to produce it. Any free-format text is appropriate. 

	Conventions 
	Conventions=”CF-1.4 EGO -1.0” 
	Name of the conventions followed by the dataset. 

	netcdf_version 
	netcdf_version=”3.6” 
	Netcdf version used for the data set 

	title 

summary 
	title=”Pytheas glider data on Latex deployment” 
summary=”Oceanographic glider data from Pytheas glider deployed in gulf of Lion, North-West Mediterranean sea, in 2010. Measured properties: temperature, salinity, oxygen, turbdity.” 
	Free-format text describing the dataset. The display of these two attributes together should allow data discovery for a human reader. 

“title”: title of the dataset. Use the file name if in doubt. 

“summary”: a longer description of the dataset. A paragraph of up to 100 words is appropriate. 

	abstract
	abstract = “Glider Ocean observations have been collected by EGO since 2005 and are ongoing. EGO is Everyone's Gliding Observatory. The data are Slocum, SeaGlider or Spray gliders fitted with a wide range of sensors measuring temperature, salinity, oxygen, currents, chlorophyll, nitrate, cdom and other bio-geo-chemical data.

 This NetCDF file was created by EGO using the EGO filenaming convention version 1 and the EGO netCDF user’s manual version 1.0”;
	Paragraph describing the dataset: type of

data contained, how it was created, who

collected it, what instruments were used,

what data formatting convention was used,

etc.

	keywords
	keywords = "Turbidity, Chlorophyll, Organic Matter, Oxygen, Fluorescence, Scattering, Water Temperature, Conductivity, Salinity”
	Comma separated list of key words and

phrases.

	naming_authority 

id 
	naming_authority=”EGO” 
id=”GL_20100612_PYTHEAS_MooseT00_09_R.nc ” 
	The “id” and “naming_authority” attributes are intended to provide a globally unique identification for each dataset. For EGO data, use: 

naming_authority=”EGO” and 
id=file name (without .nc suffix), which is designed to be unique. 

Both attributes are mandatory.

	cdm_data_type 
	cdm_data_type=”Trajectory” 
	The “cdm_data_type” attribute gives the Unidata CDM (common data model) data type used by THREDDS. E.g. “Point”, “Trajectory”, “Station”, “Radial”, “Grid”, “Swath”.
More: 

http://www.unidata.ucar.edu/projects/THREDDS/CDM/CDM-TDS.htm 

	WHERE 
	
	

	area 
	area=”North West Mediterranean Sea”
	Geographical coverage
Use vocabulary from SeaDataNet sea areas (C16).

http://seadatanet.maris2.nl/v_bodc_vocab/search.asp?name=(C16)%20SeaDataNet+sea+areas&l=C16 

	geospatial_lat_min 
	geospatial_lat_min=”59.8” 
	Southernmost valid latitude, a value between -90 and 90 degrees.
This is calculated from the valid latitudes in the file.
Decimal degrees

	geospatial_lat_max 
	geospatial_lat_max=”59.8” 
	Sorthernmost valid  latitude, a value between -90 and 90 decimal degrees.
This is calculated from the valid latitudes in the file.

	geospatial_lon_min 
	geospatial_lon_min=”-41.2” 
	The westernmost valid longitude, a value between -180 and 180 degrees. 

This is calculated from the valid longitudes in the file.

	geospatial_lon_max 
	geospatial_lon_max=”-41.2” 
	The easternmost valid longitude, a value between -180 and 180 decimal degrees. 

This is calculated from the valid longitudes in the file.

	geospatial_vertical_min 
	geospatial_vertical_min=”10.0” 
	Minimum valid depth or pressure for measurements.

This is calculated from the valid depth or pressure in the file. 

	geospatial_vertical_max 
	geospatial_vertical_max=”200” 
	Maximum valid depth or pressure for measurements.
This is calculated from the valid depth or pressure in the file.

	WHEN 
	
	

	time_coverage_start 
	time_coverage_start=”2010-07-01T00:00:00Z” 
	Start date of the data in UTC. See note on time format below. 

	time_coverage_end 
	time_coverage_end=”2010-09-18T23:59:29Z” 
	Final date of the data in UTC. See note on time format below. 

	WHO 
	
	

	institution
	institution=”CNRS-LOCEAN” 
	Institution where the original data was produced. 

	institution_references 
	institution_references=”http://www.nocs.uk” 
	References to data provider institution, the place to find all information on the dataset (web-based, i.e. give URLs). 

	sdn_edmo_code
	sdn_edmo_code=”1042”
	SeaDataNet EDMO code of the institution.

EDMO is the “European Directory of Marine Organisations”.

http://seadatanet.maris2.nl/edmo/

	contact 
	contact=”laurent.beguery@dt.insu.cnrs.fr” 
	Contact person’s e-mail. 

	author 
	author=”Thierry Carval” 
	Name of the person responsible for the creation of the dataset. 

	data_assembly_center 
	data_assembly_center=”IF” 
	Data Assembly Center (DAC) in charge of this data file. 

The data_assembly_center are listed in reference table 4. 

	principal_investigator 
	principal_investigator=”Laurent Mortier” 
	Name of the principal investigator in charge of the  glider project. 

	principal_investigator_email
	principal_investigator_email=”Laurent.Mortier@upmc.fr” 
	Principal investigator’s email address.

	observatory
	observatory = “North west Mediterranean sea”
	A geographical area monitored with a fleet of gliders.

	deployment_code
	deployment_code="MooseT00_19"
	Deployment code. It is unique among EGO deployments.

This code may be used as the local code in catalogues such as SeaDataNet Common Data Index (CDI). 

	deployment_label
	deployment_label="Moose T00_19 summer 2010 deployment"
	The deployment label, a free text to describe the deployment. 

	HOW 
	
	

	distribution_statement 
	distribution_statement=”Follows CLIVAR (Climate Varibility and Predictability)  standards, cf. http://www.clivar.org/data/data_policy.php. Data available free of charge. User assumes all risk for use of data. User must display citation in any publication or product using data. User must contact PI prior to any commercial use of data.” 
	Statement describing data distribution policy. EGO has adopted the CLIVAR data policy, which explicitly calls for free and unrestricted data exchange. Details at: 

http://www.clivar.org/data/data_policy.php 



	citation 
	citation=”These data were collected and made freely available by the international EGO project and the national programs that contribute to it.” 
	The citation to be used in publications using the dataset. 

	update_interval 
	update_interval=”daily” 
	Update interval for the file, one of the following: 

“hourly”, “daily”, “yearly”, “void”. 

Use “void” for delayed-mode or archive data that do not need continuous updating. 

	qc_manual 
	qc_manual=”http://www.groom.org/data/quality_control_manual.pdf” 
	Contains the name of the manual that describes the quality control procedure. As of now, there is no separate QC manual, so the user’s manual is the appropriate reference. 


Note on time formats 
Whenever time information is given in the global attributes, it ought to be a string of the format: 
"YYYY-MM-DDThh:mm:ssZ" (i.e. year - month - day T hour : minute : second Z) 
If higher resolution than seconds is needed, any number of decimal digits (“.s”) for the seconds is acceptable: 
"YYYY-MM-DDThh:mm:ss.sZ"
In any case, the time must be in UTC. A capital “T” separates the date and the hour information. The string must end with a capital “Z”, an old indication of UTC. These formats are two (of many) described by ISO8601. 
Examples: 
· 2005-10-24T08:00:00Z 
· 2008-01-01T22:50:02.031Z 
2.3  Variables

NetCDF variables include data measured by instruments, parameters derived from the primary measurements,  and coordinate variables, which may be nominal values, such as values for depth for instruments that do not directly record depth.  The variable names are written in CAPITALIZED letters. Each variable has a specific set of attributes, some of which are mandatory. 
The mandatory variables or attributes are in bold characters.
2.3.1 Coordinate variables 

The coordinate variables orient the data in time and space. For this purpose, they have an “axis” attribute defining that they point in X, Y, Z, and T dimensions.
Default values are not allowed in coordinate variables.

All attributes in this section except the “comment” are mandatory. 
The Z axis may be represented as pressure, if, for example pressure is recorded directly by an instrument and the calculation of depth from pressure would cause a loss of information. Depth is strongly preferred, since it allows data to be used more directly.

	Type, name, dimension, attributes 
	Comment 

	double TIME(TIME); 

TIME:long_name = “time”; 

TIME:standard_name = “time”; 

TIME:units = “seconds since 1970-01-01T00:00:00Z”; 

TIME:valid_min = 0.0; 

TIME:valid_max = 90000.0; 

TIME:QC_procedure = <Y>; 

TIME:comment = “Optional comment...” 

TIME:axis = “T”;
TIME :ancilliary_variable = “TIME_QC”
TIME:sdn_parameter_urn = “SDN:P01::XXX”;
TIME:sdn_uom_urn = “SDN:P061::UTBB”;

	Time of the measurement in seconds since noon, 1970-01-01. 

Example: 
July 25, 2001, 19:14:00 is stored as 996088440. 

<X>: Replaces TIME_QC if constant. Cf. note on quality control in data variable section, value from reference table 2. 

<Y>: Cf. note on quality control in data variable section, value from reference table 2.1. 

<Z>: Choose appropriate value. 

	double JULD(TIME); 

JULD:long_name = “time”; 

JULD:standard_name = “time”; 

JULD:units = “days since 1950-01-01T00:00:00Z”; 

JULD:valid_min = 0.0; 

JULD:valid_max = 90000.0; 

JULD:QC_procedure = <Y>; 

JULD:comment = “Optional comment...” 

JULD:axis = “T”; 

JULD :ancilliary_variable = “JULD_QC”
JULD:sdn_parameter_urn = “SDN:P01::XXX”;

JULD:sdn_uom_urn = “SDN:P061::UTAA”;


	Date and time (UTC) of the measurement in days since midnight, 1950-01-01. 

JULD is a duplication of TIME expressed in Julian day. JULD is used for interoperability with other groups such as Argo.
Example: 

July 25, 2001, 19:14:00 is stored as 18833.8013889885. 

<Z>: Choose appropriate value. 

	float LATITUDE(TIME); 

LATITUDE:long_name = “Latitude of each location”; 

LATITUDE:standard_name = “latitude”; 

LATITUDE:units = “degrees_north”; 

LATITUDE:_FillValue = 99999.0;

LATITUDE:valid_min = -90.0; 

LATITUDE:valid_max = 90.0; 

LATITUDE:QC_procedure= <Y>; 

LATITUDE:comment = “Optional comment...” 

LATITUDE:axis=”Y”; 

LATITUDE :ancilliary_variable = “POSITION_QC”
LATITUDE:reference="WGS84";

LATITUDE:coordinate_reference_frame="urn:ogc:crs:EPSG::4326";

LATITUDE:sdn_parameter_urn = “SDN:P01::ALATZZ01”;

LATITUDE:sdn_uom_urn = “SDN:P061::DEGN”;
	Latitude of the measurements. 

Units: degrees north; southern latitudes are negative. 

Example: 44.4991 for 44° 29’ 56.76’’ N 

<X>: Replaces POSITION_QC if constant. Cf. note on quality control in data variable section, value from reference table 2. 

<Y>: Cf. note on quality control in data variable section, value from reference table 2.1. 

<Z>: Choose appropriate value. 

	float LONGITUDE(TIME); 

LONGITUDE:long_name = “Longitude of each location”; 

LONGITUDE:standard_name = “longitude”; 

LONGITUDE:units = “degrees_east”; 

LONGITUDE:_FillValue = 99999.0;

LONGITUDE:valid_min = -180.0; 

LONGITUDE:valid_max = 180.0; 

LONGITUDE:QC_procedure = <Y>; 

LONGITUDE:comment = “Optional comment...” 

LONGITUDE:axis=”X”; 

LONGITUDE :ancilliary_variable = “POSITION_QC”
LONGITUDE:reference="WGS84";

LONGITUDE:coordinate_reference_frame="urn:ogc:crs:EPSG::4326";

LONGITUDE:sdn_parameter_urn = “SDN:P01::ALONZZ01”;

LONGITUDE:sdn_uom_urn = “SDN:P061::DEGE”;
	Longitude of the measurements. 

Unit: degrees east; western latitudes are negative. 

Example: 16.7222 for 16° 43’ 19.92’’ E 

<X>: Replaces POSITION_QC if constant. Cf. note on quality control in data variable section, value from reference table 2. 

<Y>: Cf. note on quality control in data variable section, value from reference table 2.1. 

<Z>: Choose appropriate value. 


Note on latitude and longitude WGS84 datum 
The latitude and longitude datum is WGS84. This is the default output of GPS systems. 
EGO uses the EPSG coordinate reference system to describe geographical positions; the coordinate reference frame corresponding to WGS84 is : "urn:ogc:crs:EPSG::4326".

More on EPSG : http://www.epsg.org/
Note on TIME 
By default, the time word represents the center of the data sample or averaging period.
2.3.2 Coordinate quality control variables 

The coordinate variables have the same quality control variables as the data variables. If the quality control values are constant, the information is given in attributes of the coordinate variables. For details, see <PARAM>_QC in the section on data variables, and the note on quality control therein. 
	Type, name, dimension, attributes 
	Comment 

	byte TIME_QC(TIME); 

TIME_QC:long_name = “quality flag”; 

TIME_QC:conventions = “EGO reference table 2”; 

TIME_QC:_FillValue = -128b; 

TIME_QC:valid_min = 0b; 

TIME_QC:valid_max= 9b; 

TIME_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

TIME_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value”
	Quality flag for each TIME value. 

	byte JULD_QC(TIME); 

JULD_QC:long_name = “quality flag”; 

JULD_QC:conventions = “EGO reference table 2”; 

JULD_QC:_FillValue = -128b; 

JULD_QC:valid_min = 0b; 

JULD_QC:valid_max= 9b; 

JULD_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

JULD_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value”
	Quality flag for each JULD value.  This QC flag is a duplication of TIME_QC

	byte POSITION_QC(TIME)
POSITION_QC:long_name = “quality flag”; 

POSITION_QC:conventions = “EGO reference table 2”; 

POSITION_QC:_FillValue = -128b; 

POSITION_QC:valid_min = 0b; 

POSITION_QC:valid_max= 9b; 

POSITION_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

POSITION_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value”; 
	Quality flag for each LATITUDE and LONGITUDE value. 


2.3.3 Profile, phase and direction management

A glider regularly performs various phases such as surface, descent, inflexion, subsurface drift.

For each time stamp, the following variables indicate the phase of the glider at that time.

During ascent or descent phase, the glider performs vertical profiles.

A number is associated with each phase.

The first phase of the deployment is number 0: it is the surface drift before the first dive.

The phase number is increased by 1 for each new phase.
	Type, name, dimension, attributes 
	Comment 

	byte PHASE(TIME); 

PHASE:long_name = “Glider trajectory phase code”; 

PHASE:conventions = “EGO reference tabe 9”; 

PHASE:_FillValue = -128;

PHASE:flag_values = 0b, 1b, 2b, 3b, 4b, 5b; 

PHASE:flag_meanings = “surface_drift descent subsurface_drift inflexion ascent grounded”
	Phase of the trajectory at that time, described in reference table 9.


	int PHASE_NUMBER(TIME)
PHASE_NUMBER:long_name = “Glider trajectory phase number”; 

PHASE_NUMBER:_FillValue = 99999;
	A number associated with the phase.

The first phase number is 0.

The phase number is increased at each phase change.


2.3.4 Positioning method

The positions reported in variables latitude and longitude are reported from various sources : GPS, Argos, interpolation.
	Type, name, dimension, attributes 
	Comment 

	byte POSITIONING_METHOD(TIME); 

POSITIONING_METHOD:long_name = “positioning method”; 

POSITIONING_METHOD:_FillValue = -128;

POSITIONING_METHOD:conventions = “EGO reference tabe 10”; 

POSITIONING_METHOD:flag_values = 0, 1, 2; 

POSITIONING_METHOD:flag_meanings = “gps argos interpolated”
	Positionning method at that time, described in reference table 10.



2.3.5 Data variables 

Data variables contain the actual measurements and indicators about their quality, uncertainty, and mode through which they were obtained. There are different options as to how the indicators are specified, whether in attributes or separate variables, which are outlined in the notes below the table. The variable names are standardized in reference table 3; replace <PARAM> with any of the names indicated there. Mandatory attributes are marked as such, however, EGO requests that all other attributes be used and contain meaningful information unless technical reasons make this impossible. 
	Type, name, dimension, attributes 
	Comment 

	float <PARAM>(TIME); 

<PARAM>:standard_name = “<X>”; 

<PARAM>:units = “<Y>”; 

<PARAM>:_FillValue = <Y>; 

<PARAM>:long_name = “Y”; 

<PARAM>:valid_min = <Y>; 

<PARAM>:valid_max = <Y>; 

<PARAM>:comment = “<Y>”; 

<PARAM>:sensor_mount = <X>; 

<PARAM>:sensor_orientation = <X>; 

<PARAM>:sensor_name = <Y>; 

<PARAM>:sensor_serial_number = <Y>;  

<PARAM>:ancillary_variables = “<Y>” ; 

<PARAM>:accuracy = <Y>; 

<PARAM>:precision = <Y>; 

<PARAM>:resolution = <Y>; 

<PARAM>: cell_methods = “<X>”; 

<PARAM>:DM_indicator = “<X>” 

<PARAM>:reference_scale = “<Y>” 

<PARAM>:coordinates = “TIME LATITUDE LONGITUDE PRES” 

<PARAM>:sdn_parameter_urn = “XXX”;

<PARAM>:sdn_uom_urn = “XXX”;

<PARAM>:sdn_uom_name = “XXX”;
<PARAM>:glider_original_parameter_name = “XXX”;

	<PARAM> names are defined in reference table 3.
Examples: PRES, TEMP, PSAL, DOXY. 

These attributes are mandatory: units and _FillValue. 
If a standard_name exists for this variable, it is mandatory.

These 9 attributes are highly desirables : QC_procedure, valid_min, valid_max, sensor_name, sensor_serial_number accuracy, precision, resolution, DM_indicator.

The other attributes are optional.
<X> : standardized attributes listed in reference tables in chapter 3
<Y> : attributes whose value is set by the PI (Principal Investigator) 

standard_name: type char, see reference. table 3 

units: type char, see reference table 3

_FillValue: type float, see reference table 3 

long_name: type char, free text

valid_min: type float. Minimum value for valid data for this dataset
valid_max: type float. Maximum value for valid data for this dataset
comment. type char. Any free-format text with comments as appropriate.
sensor_mount type char. See reference table 20 for sensor mounting characteristics. 
sensor_orientation type char. See reference table 21 for sensor orientation characteristics.

sensor_name type char (if the data all come from a single sensor).
sensor_serial_number type char (if the data all come from a single sensor).

ancillary_variables. type char. Other variables associated with <PARAM>, e.g. <PARAM>_QC. List as space-separated string. Example: TEMP:ancillary_variables=”TEMP_QC TEMP_DM TEMP_UNCERTAINTY” 

accuracy: type float. Nominal sensor accuracy. Cf. note on uncertainty below. 

precision: type float. Nominal sensor precision. Cf. note on uncertainty below. 

resolution: type float. Nominal resolution of this data parameter.  

cell_methods: type char. Specifies cell method as per CF convention. Example: TEMP:cell_methods=”TIME: mean” Values are listed in table 2.2
The boundary of the cells are described in the axis bound attribute (see CF convention for cell boundary, cell measure and cell method) 
DM_indicator: Type char. Data mode, if constant, as per reference table 19. Cf. note on data modes below. 

reference_scale: type char. For some measurements that are provided according to a standard reference scale specify the reference scale with this optional attribute. Example: ITS-90, PSS-78

sdn_parameter_urn: SeaDataNet parameter code
sdn_uom_urn: SeaDataNet unit code
glider_original_parameter_name: the parameter name as originaly reported by the glider


	byte <PARAM>_QC(TIME); 

<PARAM>_QC:long_name = “quality flag”; 

<PARAM>_QC:conventions = “EGO reference table 2”; 

<PARAM>_QC:_FillValue = -128b; 

<PARAM>_QC:valid_min = 0b; 

<PARAM>_QC:valid_max= 9b; 

<PARAM>_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

<PARAM>_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value” 
	Quality flags for values of associated <PARAM>.
The flag scale is specified in reference table 2, and is included in the flag_meanings attribute.

 

	float <PARAM>_UNCERTAINTY(TIME):
<PARAM>_UNCERTAINTY:long_name = “uncertainty” 

<PARAM>_UNCERTAINTY:_FillValue=<Y>
<PARAM>:units = “<Y>”; 
	Overall uncertainty of the data given in <PARAM>.
See note on uncertainty below. 

 


Note on uncertainty, accuracy, resolution and precision 

If the overall measurement uncertainty for a variable <PARAM> is reasonably well-known, it must be provided in a variable of its own, <PARAM>_UNCERTAINTY. 

If it is impossible to estimate the measurement uncertainty, it is required to define at least the attribute <PARAM>:accuracy with the nominal sensor accuracy.
The attributes <PARAM>:precision and <PARAM>:resolution are optional; they contain the sensor precision and resolution if known. 

Note vertical axis

The PRES variable is usually a vertical axis. Its axis attribute is “Z” : PRES:axis=”Z”.

It has a “positive” mandatory attribute set to “down”.

Example for sea temperature measurements and associated quality flags

float TEMP(TIME);  

TEMP:standard_name = “sea_water_temperature”;  

TEMP:units = “degree_Celsius”;  

TEMP:_FillValue = 99999.f;  

TEMP:long_name = “sea water temperature in-situ ITS-90 scale”;  

TEMP:valid_min = -2.0f;  

TEMP:valid_max = 40.f;

TEMP:comment = “”;

TEMP:sensor_depth = 1; 

TEMP:sensor_mount = "mounted_on_glider_tail"; 

TEMP:sensor_name = "SBE41"; 

TEMP:sensor_serial_number = "3263";  

TEMP:ancillary_variables = “TEMP_QC” ;

TEMP:accuracy = 0.01f; 

TEMP:precision = 0.01f; 

TEMP:resolution = 0.001f;

TEMP:cell_methods=”median”;

TEMP:DM_indicator=”P”;  

TEMP:reference_scale = “ITS-90”;

byte TEMP_QC(TIME);

TEMP_QC:long_name = “quality flag”; 

TEMP_QC:conventions = “EGO reference table 2”; 

TEMP_QC:_FillValue = -128b;  

TEMP_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

TEMP_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value” 

2.3.6 History information

These dimensions are specific to history section.

	Name 
	Definition 
	Comment 

	N_HISTORY 
	N_HISTORY =<int value>; 
	Number of history records.


This section contains history information for each action performed on the time-series by a data centre.

Each item of this section has a N_HISTORY (number of history records) dimension.

A history record is created whenever an action is performed on a part of the time-series definied by history_start_time and history_stop_time.

The recorded actions are coded and described in the history code table from the reference table 7.

On the GDAC, multi-profile history section is empty to reduce the size of the file. History section is available on mono-profile files, or in multi-profile files distributed from the web data selection.

	Name
	Definition
	Comment

	HISTORY_INSTITUTION
	char HISTORY_INSTITUTION (N_HISTORY, STRING2);

HISTORY_INSTITUTION:long_name = "Institution which performed action”;

HISTORY_INSTITUTION:conventions = "EGO reference table 4";

HISTORY_INSTITUTION:_FillValue = " ";
	Institution that performed the action.

Institution codes are described in reference table 4.

Example : ME for MEDS

	HISTORY_STEP
	char HISTORY_STEP (N_HISTORY, STRING4);

HISTORY_STEP:long_name = "Step in data processing";

HISTORY_STEP:conventions = "EGO reference table 12";

HISTORY_STEP:_FillValue = " ";
	Code of the step in data processing for this history record. The step codes are described in reference table 12.

Example : 

ARGQ : Automatic QC of data reported in real-time has been performed

	HISTORY_SOFTWARE
	char HISTORY_SOFTWARE (N_HISTORY, STRING8);

HISTORY_SOFTWARE:long_name = "Name of software which performed action";

HISTORY_SOFTWARE:conventions = "Institution dependent";

HISTORY_SOFTWARE:_FillValue = " ";
	Name of the software that performed the action.

This code is institution dependent.

Example : WJO



	HISTORY_SOFTWARE_RELEASE
	char HISTORY_SOFTWARE_RELEASE (N_HISTORY, STRING4);

HISTORY_SOFTWARE_RELEASE:long_name = "Version/release of software which performed action";

HISTORY_SOFTWARE_RELEASE:conventions = "Institution dependent";

HISTORY_SOFTWARE_RELEASE:_FillValue = " ";
	Version of the software.

This name is institution dependent.

Example : «1.0»

	HISTORY_REFERENCE
	char HISTORY_REFERENCE (N_HISTORY, STRING64);

HISTORY_REFERENCE:long_name = "Reference of database";

HISTORY_REFERENCE:conventions = "Institution dependent";

HISTORY_REFERENCE:_FillValue = " ";
	Code of the reference database used for quality control in conjunction with the software.

This code is institution dependent.

Example : WOD2001



	HISTORY_DATE
	char HISTORY_DATE(N_HISTORY, DATE_TIME);

HISTORY_DATE:long_name = "Date the history record was created";

HISTORY_DATE:conventions = "YYYYMMDDHHMISS";

HISTORY_DATE:_FillValue = " ";
	Date of the action.

Example : 20011217160057

	HISTORY_ACTION
	char HISTORY_ACTION (N_HISTORY, STRING64);

HISTORY_ACTION:long_name = "Action performed on data";

HISTORY_ACTION:conventions = "EGO reference table 7";

HISTORY_ACTION:_FillValue = " ";
	Name of the action.

The action codes are described in reference table 7.

Example : QCF$ for QC failed

	HISTORY_PARAMETER
	char HISTORY_PARAMETER(N_HISTORY, STRING16);

HISTORY_PARAMETER:long_name = "Parameter action is performed on";

HISTORY_PARAMETER:conventions = "EGO reference table 3";

HISTORY_PARAMETER:_FillValue = " ";
	Name of the parameter on which the action is performed.

Example : PSAL

	HISTORY_PREVIOUS_VALUE
	float HISTORY_PREVIOUS_VALUE(N_HISTORY);

HISTORY_PREVIOUS_VALUE:long_name = "Parameter/Flag previous value before action";

HISTORY_PREVIOUS_VALUE:_FillValue = 99999.f;
	Parameter or flag of the previous value before action.

Example : 2 (probably good) for a flag that was changed to 1 (good)

	HISTORY_START_TIME_INDEX
	int HISTORY_START_TIME_INDEX (N_HISTORY);

HISTORY_START_TIME_INDEX:long_name = "Start time index action applied on";

HISTORY_START_TIME_INDEX:_FillValue = 

99999;


	Start time index the action is applied to.
Example : 100

	HISTORY_STOP_TIME_INDEX
	int HISTORY_STOP_TIME_INDEX (N_HISTORY);

HISTORY_STOP_TIME_INDEX:long_name = "Stop time index action applied on";

HISTORY_STOP_TIME_INDEX:_FillValue = 

99999;


	Stop time index the action is applied to.
Example : 150

	HISTORY_QCTEST
	char HISTORY_QCTEST(N_HISTORY,  STRING16);

HISTORY_QCTEST:long_name = "Documentation of tests performed, tests failed (in hex form)";

HISTORY_QCTEST:conventions = "Write tests performed when ACTION=QCP$; tests failed when ACTION=QCF$";

HISTORY_QCTEST:_FillValue = " ";
	This field records the tests performed when ACTION is set to QCP$ (qc performed), the test failed when ACTION is set to QCF$ (qc failed).

The QCTEST codes are describe in reference table 11.

Example : 0A (in hexadecimal form)


The usage of history section is described in §5 "Using the History section of the EGO netCDF Structure".
2.4 Gliders metadata

2.4.1 Dimensions and definitions 

These dimensions are specific to metadata items.

	Name 
	Definition 
	Comment 

	N_PARAM 
	N_PARAM=<int value>; 
	Number of parameters measured or calculated during the glider deployment. 

Examples : (pressure, temperature) : N_PARAM = 2

(pressure, temperature, salinity) : N_PARAM = 3 (pressure, temperature, conductivity, salinity) : N_PARAM = 4

	N_DERIVATION
	N_DERIVATION=<int value>;
	Maximum number of calibrations for a parameter 

	N_POSITIONING_SYSTEM
	N_POSITIONING_SYSTEM=<int value>;
	Number of positioning systems.

	N_TRANS_SYSTEM
	N_TRANS_SYSTEM=<int value>;
	Number of transmission systems.


2.4.2 Glider characteristics 

This section contains the main characteristics of the glider. 

	Name 
	Definition 
	Comment 

	TRANS_SYSTEM_ID 
	char TRANS_SYSTEM_ID(N_TRANS_SYSTEM, STRING32);

TRANS_SYSTEM_ID:long_name = "The program identifier used by the transmission system”;

TRANS_SYSTEM_ID:_FillValue = " ";  
	Program identifier of the telecommunication subscription. Use N/A when not applicable (eg : Iridium or Orbcomm)

Example : 38511 is a program number for all the beacons of an ARGOS customer. 

	TRANS_FREQUENCY 
	char TRANS_FREQUENCY(N_TRANS_SYSTEM,STRING16);

TRANS_FREQUENCY:long_name = "The frequency of transmission from the glider";

TRANS_FREQUENCY:units = "hertz";

TRANS_FREQUENCY:_FillValue = “ ”;
	Frequency of transmission from the glider.

Unit : hertz

Example : 1/44 

	POSITIONING_SYSTEM 
	char POSITIONING_SYSTEM(N_POSITIONING_SYSTEM, STRING8);

POSITIONING_SYSTEM:long_name = "Positioning system";

POSITIONING_SYSTEM:_FillValue = " ";
	Position system from reference table 9. ARGOS or GPS are 2 positioning systems.

Example : GPS 

	PLATFORM_FAMILY
	char PLATFORM_FAMILY (STRING256); PLATFORM_FAMILY:long_name = "Category of instrument ";

PLATFORM_FAMILY:_FillValue = " ";
	Category of instrument.

See reference table 22 (§3.15).
Example: coastal glider, open ocean glider

	PLATFORM_TYPE
	char PLATFORM_TYPE (STRING32); PLATFORM_TYPE:long_name = "Type of glider"; PLATFORM_TYPE:_FillValue = " "; 
	Type of glider.

See reference table 8.

Example: Slocum, Seaglider



	PLATFORM_MAKER 
	char PLATFORM_MAKER (STRING256); PLATFORM_MAKER:long_name = "The name of the manufacturer ";

PLATFORM_MAKER:_FillValue = " "; 
	Name of the manufacturer. 

Example : Webb Research Corporation 

	FIRMWARE_VERSION_NAVIGATION
	char FIRMWARE_ VERSION_NAVIGATION (STRING16);

FIRMWARE_ VERSION_NAVIGATION:long_name = “The firmware version of the navigation controller board”;  

FIRMWARE_ VERSION_NAVIGATION:_FillValue = " ";
	The firmware version of the navigation controller board.

	FIRMWARE_VERSION_SCIENCE
	char FIRMWARE_VERSION_SCIENCE (STRING16);

FIRMWARE_VERSION_SCIENCE:long_name = “The firmware version of the scientific sensors controller board”;
FIRMWARE_VERSION_SCIENCE:_FillValue = " ";
	The firmware version of the scientific sensors controller board.

	MANUAL_VERSION
	char MANUAL_ VERSION (STRING16);

MANUAL_ VERSION:long_name = “The manual version for the glider”;  

MANUAL_ VERSION:_FillValue = " ";
	The version date or number for the manual for each glider. Example 110610 or 004 

	GLIDER_SERIAL_NO
	char GLIDER_SERIAL_NO(STRING16);

long_name = "The serial number of the glider"; GLIDER_SERIAL_NO:_FillValue = " ";
	This field should contain only the serial number of the glider.

Example 1679

	STANDARD_FORMAT_ID
	char STANDARD_FORMAT_ID(STRING16);

STANDARD_FORMAT_ID:long_name = "A standard format number to describe the data format type for each glider.";

STANDARD_FORMAT_ID:_FillValue = " ";
	Standardised format number as described in the reference table online (host site yet to be determined), this table cross references to individual DAC format numbers

Example: 1

	DAC_FORMAT_ID
	char DAC_FORMAT_ID(STRING16);

DAC_FORMAT_ID:long_name = "The format  number used by the DAC to describe the data format type for each glider.";

DAC_FORMAT_ID:_FillValue = " ";
	Format numbers used by individual DACs to describe each glider type. This is cross-referenced to a standard format id by a reference table online (host site yet to be determined).

	WMO_INST_TYPE 
	char WMO_INST_TYPE(STRING4); WMO_INST_TYPE:long_name = "Coded instrument type”; 

WMO_INST_TYPE:conventions = "EGO reference table 8";

WMO_INST_TYPE:_FillValue = " "; 
	Instrument type from WMO code table 1770. A subset of WMO table 1770 is documented in the reference table 8. Example : 846 : Webb Research glider, Seabird sensor 

	PROJECT_NAME
	char PROJECT_NAME(STRING64); PROJECT_NAME:long_name = "The program under which the glider was deployed”; PROJECT_NAME:_FillValue = " "; 
	Name of the project which operates the profiling glider that performed the profile.

Example : GYROSCOPE (EU project for EGO program) 

	DATA_CENTRE
	char DATA_CENTRE(STRING2); DATA_CENTRE:long_name = "Data centre in charge of glider real-time processing"; DATA_CENTRE:conventions = "EGO reference table 4";

DATA_CENTRE:_FillValue = " "; 
	Code of the data centre in charge of the glider data management. The data centre codes are described in the reference table 4.

Example: ME for MEDS 

	PI_NAME 
	char PI_NAME (STRING64); PI_NAME:long_name = "Name of the principal investigator"; PI_NAME:_FillValue = " "; 
	Name of the principal investigator in charge of the glider.

Example: Yves Desaubies 

	ANOMALY
	char ANOMALY(STRING256); ANOMALY:long_name = "Describe any anomalies or problems the glider may have had.";

ANOMALY:_FillValue = " "; 
	This field describes any anomaly or problem the glider may have had. Example: “the immersion drift is not stable.” 

	BATTERY_TYPE
	char BATTERY_TYPE(STRING64);

BATTERY_TYPE: long_name = “The type of battery packs in the glider.”;

BATTERY_TYPE:_FillValue = " ";
	Describes the type of battery packs in the glider.

Example: Alkaline, Lithium or Alkaline and Lithium

	BATTERY_PACKS
	char BATTERY_PACKS(STRING64);

BATTERY_PACKS: long_name = “The configuration of battery packs in the glider.”;

BATTERY_PACKS:_FillValue = " ";
	Describes the configuration of battery packs in the glider, number and type. Example: 4DD Li + 1C Alk

	SPECIAL_FEATURES
	char SPECIAL_FEATURES (STRING1024); SPECIAL_FEATURES:long_name = "Extra features of the glider (algorithms, compressee etc.)"; SPECIAL_FEATURES:_FillValue = " ";
	Additional glider features can be specified here such as algorithms used by the glider (Ice Sensing Algorithm, Interim Storage Algorithm, grounding avoidance) or additional hardware such as a compressee (buoyancy compensator).

Example : “Ice Sensing Algorithm”

	GLIDER_OWNER
	char GLIDER_OWNER (STRING64); GLIDER_OWNER:long_name = "The glider owner"; GLIDER_OWNER:_FillValue = " ";
	The owner of the glider (may be different from the data centre and operating institution).

Example: “SCRIPPS”

	OPERATING_INSTITUTION
	char OPERATING_INSTITUTION (STRING64); OPERATING_INSTITUTION:long_name = "The operating institution of the glider"; OPERATING_INSTITUTION:_FillValue = " ";
	The operating institution of the glider (may be different from the glider owner and data centre).

Example: “INSU”

	CUSTOMISATION
	char CUSTOMISATION (STRING1024); CUSTOMISATION:long_name = "Glider customisation, i.e. (institution and modifications)"; CUSTOMISATION:_FillValue = " ";
	Free form field to record changes made to the glider after manufacture and before deployment, i.e. this could be the customisation institution plus a list of modifications.


2.4.3 Glider deployment information 

	Name 
	Definition 
	Comment 

	DEPLOYMENT_START_DATE
	charDEPLOYMENT_START_DATE(DATE_TIME); 

DEPLOYMENT_START_DATE:long_name = "Date (UTC) of the 

deployment"; 

DEPLOYMENT_START_DATE:conventions = "YYYYMMDDHHMISS";DEPLOYMENT_START_DATE:_FillValue = " ";
	Date and time (UTC) of deployment of the glider. 

Format : YYYYMMDDHHMISS 

Example : 20011230090500 : December 30th 2001 

09:05:00

	DEPLOYMENT_START_LATITUDE 
	double DEPLOYMENT_START_LATITUDE; DEPLOYMENT_START_LATITUDE:long_name = "Latitude of the glider when deployed";

DEPLOYMENT_START_LATITUDE:units = "degrees_north"; DEPLOYMENT_START_LATITUDE:_FillValue = 99999.; 

DEPLOYMENT_START_LATITUDE:valid_min = -90.; DEPLOYMENT_START_LATITUDE:valid_max = 90.;

	Latitude of the deployment. 

Unit : degree north.
Example : 44.4991 : 44° 29’ 56.76’’ N 



	DEPLOYMENT_START_LONGITUDE
	double DEPLOYMENT_START_LONGITUDE; DEPLOYMENT_START_LONGITUDE:long_name = "Longitude of the glider when deployed";

DEPLOYMENT_START_LONGITUDE:units = "degrees_east"; DEPLOYMENT_START_LONGITUDE:_FillValue = 99999.; 

DEPLOYMENT_START_LONGITUDE:valid_min = -180.; 

DEPLOYMENT_START_LONGITUDE:valid_max = 180.;
	Longitude of the deployment.
Unit : degree east

Example : 16.7222 : 16° 43’ 19.92’’ E 

	DEPLOYMENT_START_QC
	byte DEPLOYMENT_START_QC;

DEPLOYMENT_START_QC:long_name = "Quality on DEPLOYMENT_START date, time and location";

DEPLOYMENT_START_QC:conventions = "EGO reference table 2";
DEPLOYMENT_START_QC:_FillValue = -128b; 

DEPLOYMENT_START _QC:valid_min = 0b; 

DEPLOYMENT_START _QC:valid_max= 9b; 

DEPLOYMENT_START _QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

DEPLOYMENT_START _QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value” 
	Quality flag on deployment date, time and location.
 The flag scale is described in the reference table 2. 

Example : 1 : deployment location seems correct.

	DEPLOYMENT_PLATFORM
	char DEPLOY_PLATFORM(STRING32); DEPLOY_PLATFORM:long_name = "Identifier of the deployment platform";

DEPLOY_PLATFORM:_FillValue = " ";

	Identifier of the deployment platform.
Example : L’ATALANTE 

	DEPLOYMENT_CRUISE_ID
	char DEPLOYMENT_CRUISE_ID (STRING32); DEPLOYMENT_CRUISE_ID:long_name = "Identifier of the cruise used that deployed the glider"; DEPLOYMENT_CRUISE_ID:_FillValue = " ";
	Identifier of the cruise used to deploy the platform. 

Example : POMME2

	DEPLOYMENT_REFERENCE_STATION_ID
	char DEPLOYMENT_REFERENCE_STATION_ID (STRING256); DEPLOYMENT_REFERENCE_STATION_ID:long_name = "Identifier of stations used to verify the parameter measurements"; DEPLOYMENT_REFERENCE_STATION_ID:_FillValue = " ";
	Identifier of CTD or XBT stations used to verify the first profile.

Example : 58776, 58777

	DEPLOYMENT_END_DATE  
	char DEPLOYMENT_END_DATE  (DATE_TIME); DEPLOYMENT_END_DATE :long_name = "Date (UTC) of the  glider recovery"; 

DEPLOYMENT_END_DATE :conventions = "YYYYMMDDHHMISS"; 

END_MISSION_DATE:_FillValue = " "; 
	Date (UTC) of the end of deployment of the glider.  

Format : YYYYMMDDHHMISS 

Example : 20011230090500 : December 30th 2001 

09:05:00

	DEPLOYMENT_END_LATITUDE 
	double DEPLOYMENT_END_LATITUDE; DEPLOYMENT_END_LATITUDE:long_name = "Latitude of the glider recovery";

DEPLOYMENT_END_LATITUDE:units = "degrees_north"; DEPLOYMENT_END_LATITUDE:_FillValue = 99999.; 

DEPLOYMENT_END_LATITUDE:valid_min = -90.; DEPLOYMENT_END_LATITUDE:valid_max = 90.;


	Latitude of the recovery of the glider. 

Unit : degree north.

Example : 44.4991 : 44° 29’ 56.76’’ N 



	DEPLOYMENT_END_LONGITUDE
	double DEPLOYMENT_END_LONGITUDE; DEPLOYMENT_END_LONGITUDE:long_name = "Longitude of the glider recovery";

DEPLOYMENT_END_LONGITUDE:units = "degrees_east"; DEPLOYMENT_END_LONGITUDE:_FillValue = 99999.; 

DEPLOYMENT_END_LONGITUDE:valid_min = -180.; 

DEPLOYMENT_END_LONGITUDE:valid_max = 180.;
	Longitude of the recovery of the glider.

Unit : degree east

Example : 16.7222 : 16° 43’ 19.92’’ E 

	DEPLOYMENT_END_QC
	byte DEPLOYMENT_END_QC; DEPLOYMENT_END_QC:long_name = "Quality on DEPLOYMENT_END  date, time and location";

DEPLOYMENT_END_QC:conventions = "EGO reference table 2"; 

DEPLOYMENT_END_QC:_FillValue = -128b; 

DEPLOYMENT_ END_QC:valid_min = 0b; 

DEPLOYMENT_ END_QC:valid_max= 9b; 

DEPLOYMENT_ END_QC:flag_values = 0b, 1b, 2b, 3b, 4b, 5b, 8b, 9b; 

DEPLOYMENT_ END_QC:flag_meanings = “no_qc_performed good_data probably_good_data bad_data_that_are_potentially_correctable bad_data value_changed interpolated_value missing_value”

	Quality flag on end deployment date, time and location.

 The flag scale is described in the reference table 2. 

Example : 1 : deployment location seems correct.

	DEPLOYMENT_END_STATUS 
	char DEPLOYMENT_END_STATUS; 

DEPLOYMENT_END_STATUS:long_name = "Status of the end of mission of the glider"; 

DEPLOYMENT_END_STATUS:conventions = "R:Retrieved, L:lost"; 

DEPLOYMENT_END_STATUS:_FillValue = " ";
	Status of the end of mission of the glider. 

R:Retrieved 

L: lost

	DEPLOYMENT_OPERATOR
	char DEPLOYMENT_OPERATOR(STRING256); DEPLOYMENT_OPERATOR:long_name = “Name of the person in charge of the glider deployment”;
DEPLOYMENT_OPERATOR:_FillValue = " ";
	Name of the person in charge of the glider deployment


2.4.4 Glider sensor information 

This section contains information about the sensors of the glider. 

	Name 
	Definition 
	Comment 

	SENSOR 
	char SENSOR(N_PARAM,STRING16);

SENSOR:long_name = "List of sensors on the glider "; SENSOR:conventions = "EGO reference table 3"; SENSOR:_FillValue = " "; 
	Parameters measured by sensors of the glider. The parameter names are listed in reference table 3.

Examples : TEMP, PSAL, CNDC TEMP : temperature in celsius PSAL : practical salinity in psu CNDC : conductvity in mhos/m.

	SENSOR_MAKER
	char SENSOR_MAKER(N_PARAM,STRING256); SENSOR_MAKER:long_name = "The name of the manufacturer ";

SENSOR_MAKER:_FillValue = " "; 
	Name of the manufacturer of the sensor.

Example : SEABIRD 

	SENSOR_MODEL 
	char SENSOR_MODEL (N_PARAM,STRING256); SENSOR_MODEL:long_name = "The model of the sensor"; SENSOR_MODEL:_FillValue = " "; 
	Model of sensor.

Example : SBE41 

	SENSOR_SERIAL_NO 
	char SENSOR_SERIAL_NO(N_PARAM,STRING16); SENSOR_SERIAL_NO:long_name = "The serial number of the sensor";

SENSOR_SERIAL_NO:_FillValue = " "; 
	Serial number of the parameter.

Example : 2646 036 073 

	SENSOR_UNITS
	 char SENSOR_UNITS(N_PARAM, STRING16); SENSOR_UNITS:long_name = "The units of the parameter";

SENSOR_UNITS:_FillValue = " "; 
	Units of the parameter. Example : psu 

	SENSOR_ACCURACY 
	char SENSOR_ACCURACY(N_PARAM, STRING32); SENSOR_ACCURACY:long_name = "The accuracy of the parameter";

SENSOR_ACCURACY:_FillValue = " "; 
	Accuracy of the parameter.

Example: "8 micromole/l or 5%"

	SENSOR_RESOLUTION 
	char SENSOR_RESOLUTION(N_PARAM, STRING32); SENSOR_RESOLUTION:long_name = "The resolution for the parameter"; 

SENSOR_RESOLUTION:_FillValue =" "; 
	Resolution of the sensor.

Example : 0.001 micromole/l 


2.4.5 Glider parameter derivation and calibration information 

This section contains information about the parameter derivation and the parameter calibration.
A derived parameter is calculated from one or several parameters.
Example : salinity is derived from conductivity, temperature and pressure.

Calibrations are applied to parameters to create adjusted parameters. Different calibration methods will be used by groups processing glider data. When a method is applied, its description is stored in the following fields.
If no derivation or calibration is available, N_DERIVATION is set to 1, all values of the derivation section are set to fill values.
	Name
	Definition
	Comment

	DERIVATION_PARAMETER
	char DERIVATION_PARAMETER(N_DERIVATION, STRING16);

DERIVATION_PARAMETER:long_name = "List of parameters with derivation or calibration information";

DERIVATION_PARAMETER:conventions = "EGO reference table 3";

DERIVATION_PARAMETER:_FillValue = " ";
	Name of the derived or calibrated parameter. The list of parameters is in reference table 3.

Example : PSAL

	DERIVATION_EQUATION
	char DERIVATION_EQUATION (N_DERIVATION,STRING256);

DERIVATION_EQUATION:long_name = "Derivation or calibration equation for this parameter";

DERIVATION_EQUATION:_FillValue = " ";
	Derivation or calibration equation applied to the parameter. 

Example :

Tc = a1 * T + a0

	DERIVATION_COEFFICIENT
	char DERIVATION_COEFFICIENT (N_DERIVATION,STRING256);

DERIVATION_COEFFICIENT:long_name = " Derivation or calibration coefficients for this equation";

DERIVATION_COEFFICIENT:_FillValue = " ";
	Derivation or calibration coefficients for this equation.

Example :

a1=0.99997 , a0=0.0021

	DERIVATION_COMMENT
	char DERIVATION_COMMENT (N_DERIVATION,STRING256);

DERIVATION_COMMENT:long_name = "Comment applying to this parameter derivation or calibration ";

DERIVATION_COMMENT:_FillValue = " ";
	Comment about this derivation or calibration
Example :

The sensor is not stable

	DERIVATION_DATE
	char DERIVATION_DATE (N_DERIVATION, DATE_TIME)
DERIVATION_DATE:long_name = "Date (UTC) of derivation or calibration ";

DERIVATION_DATE:_FillValue = " ";
	Date of the derivation or calibration.

Format : YYYYMMDDHHMISS 

Example : 20011230090500 : December 30th 2001 

09:05:00


Note on derived parameters, such as oxygen and salinity
Some parameters are calculated (derived) from observed parameters.

Example: salinity is calculated from temperature, conductivity and pressure.

The equation used to calculate derived parameters is recorded as the first calibration of the parameter.

Its calibration date is set to the deployment date.

Note on pre-deployment calibrations

Pre-deployment calibrations are recorded in this section. Their calibration date is set to the deployment date.

2.5 Gliders technical data
The glider technical data are managed as variables (see “variables” chapter 2.3).

Generally, a technical data has no CF standard name.

3 Reference tables 

3.1 Reference tables 1: data type

The data_type global attribute should have one of the valid values listed here. 
	Data type 

	EGO glider time-series data


3.2 Reference table 2: Variable quality control flag scale 

The quality control flags indicate the data quality of the data values in a file, and are normally assigned after quality control procedures have been performed. These codes are used in the <PARAM>_QC, TIME_QC, POSITION_QC variables to describe the quality of each measurement.
	Code 
	Meaning 
	Comment 

	0 
	No QC was performed 
	- 

	1 
	Good data 
	All QC tests passed. 

	2 
	Probably good data 
	- 

	3 
	Bad data that are potentially correctable 
	These data are not to be used without scientific correction or re-calibration. 

	4 
	Bad data 
	Data have failed one or more tests. 

	5 
	Value changed 
	Data may be recovered after transmission error. 

	6 
	- 
	Not used.

	
	
	

	8 
	Interpolated value 
	Missing data may be interpolated from neighboring data in space or time. 

	9 
	Missing value 
	- 


3.2.1 Reference table 2.2: cell methods 

From NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.2, 4 May, 2008. In the Units column, u indicates the units of the physical quantity before the method is applied.
	Cell Method
	Units
	Description

	point 
	u 
	The data values are representative of points in space or time (instantaneous).

	sum 
	u 
	The data values are representative of a sum or accumulation over the cell.

	maximum 
	u 
	Maximum 

	median 
	u 
	Median 

	mid_range 
	u 
	Average of maximum and minimum 

	minimum 
	u 
	Minimum 

	mean 
	u 
	Mean (average value) 

	mode 
	u 
	Mode (most common value) 

	standard_deviation 
	u 
	Standard deviation 

	variance 
	u2 
	Variance 


3.3 Reference table 3: EGO parameter dictionary 

3.3.1 Convention for parameter names, standard names and units 
· Parameter names should start with a code based on SeaDataNet-BODC parameter discovery vocabulary.
They are not strictly standardized, however.
When necessary, a parameter name has a suffix that designates secondary parameters . The suffix starts with the character “_”. 

· The NetCDF “standard_name” attribute contains the standardized parameter name from CF conventions. 
· The NetCDF “units” attribute are compliant with Udunits as implemented in the CF/COARDS standards. 
As the parameter names are not strictly standardized, one should use the standard_name attribute to query a particular measurement from different data files. 
Relevant information on the parameter is recorded in the attributes of the parameter; _xxx in the parameter name is just a guide

Clarify the description of calculated parameters (ex : PSAL)

Example
On a glider, sea temperature measured by a series of Microcat CTD is reported as TEMP, with a standard name of SEA_WATER_TEMPERATURE. 
Secondary temperature measurement performed by an oxygen sensor is reported as DOXY_TEMP with a standard name of temperature_of_sensor_for_oxygen_in_sea_water.
For both measurements, the unit attribute is “degree_Celsius”. 
3.3.2 EGO parameter list

The EGO parameter list is regularly updated with new parameters. It is available form:

· http://xxxx/ego-parameter-list

On December 2012, the parameter list was as below (not available yet…).
3.3.3 References 

The EGO standard names are taken from the CF standard names, available at: 
· http://cf-pcmdi.llnl.gov/documents/cf-standard-names/ 
· The parameter names are based on SeaDataNet-BODC parameter discovery vocabulary available at: 
· http://seadatanet.maris2.nl/v_bodc_vocab/welcome.aspx
Select P021, “ BODC Parameter Discovery Vocabulary” 
The units are compliant with Udunits, as implemented by the CF standard; definitions are available at: 
· http://www.unidata.ucar.edu/software/udunits 
The valid parameter names, standard names are available on GDACs ftp servers.
3.4 Reference table 4: Data Assembly Center Codes 

	Data Assembly Centers and institutions 

	IF
	Ifremer for Coriolis (French joint project for operational oceanography)

	BO
	British Oceanographic Data Centre

	
	


3.5 Reference table 5: Location classes

	ARGOS location classes

	PRIVATEValue
	Estimated accuracy in latitude and longitude

	0
	Argos accuracy estimation over 1500m radius

	1
	Argos accuracy estimation better than 1500m radius

	2
	Argos accuracy estimation better than  500 m radius

	3
	Argos accuracy estimation better than  250 m radius

	G
	GPS positioning accuracy

	I
	Iridium accuracy


3.6 Reference table 7: History action codes

	Code
	Meaning

	CF
	Change a quality flag

	CR
	Create record

	CV
	Change value

	DC
	Station was checked by duplicate checking software

	ED
	Edit a parameter value

	IP
	This history group operates on the complete input record

	NG
	No good trace

	PE
	Position error. Profile position has been erroneously encoded. Corrected if possible.

	QC
	Quality Control

	QCF$
	Tests failed

	QCP$
	Test performed

	SV
	Set a value

	TE
	Time error. Profile date/time has been erroneously encoded. Corrected if possible.

	UP
	Station passed through the update program


3.7 Reference table 8: Instrument types

The instrument type codes come from WMO table 1770.
Glider instrument codes should be requested to WMO.

As a default value, EGO uses the instrument type 830 : CTD.
	Code number 
	instrument 

	830
	CTD

	
	


3.8 Reference table 9 : Phases of the glider trajectory

A glider regularly performs surface, descent, inflexion, subsurface drift and ascent phases.

During ascent or descent phase, the glider performs vertical profiles.
	Code 
	Meaning 
	Comment 

	0 
	surface drift
	the glider is drifting on the surface layer

	1 
	descent
	the glider is descending

	2 
	subsurface drift
	the glider is drifting in subsurface

	3 
	inflexion
	the glider is changing its trajectory

	4 
	acsent
	the glider is ascending

	5
	grounded
	the glider touched the ground or seafloor or onshore 

	6
	inconsistant
	the glider pressure is not consistant with the surrounding pressures


3.9  Reference table 10 : Positioning method

The positions reported in variables latitude and longitude are reported from various sources such as: GPS, Argos or interpolation.
	Code 
	Meaning 
	Comment 

	0 
	gps
	gps positioning method.

	1 
	argos
	argos positioning method.

	2 
	interpolated
	position derived from other positions


3.10 Reference table 11: QC test binary IDs

This table is used to record the result of the quality control tests in the history section.

The binary IDs of the QC tests are used to define the history variable HISTORY_QCTEST, whose value is computed by adding the binary ID together, then translating to a hexadecimal number. An example is given on §5.3.

The test numbers and the test names are listed in the Argo Quality Control Manual:

· §2.1 “Argo Real-Time Quality Control Test Procedures on Vertical Profiles”, and

· §2.2 “Argo Real-Time Quality Control Test Procedures on Trajectories”

See http://www.argodatamgt.org/Documentation .

	Test number
	QC test binary ID
	Test name

	1
	2
	Platform Identification test

	2
	4
	Impossible Date test

	3
	8
	Impossible Location test

	4
	16
	Position on Land test

	5
	32
	Impossible Speed test

	6
	64
	Global Range test

	7
	128
	Regional Global Parameter test

	8
	256
	Pressure Increasing test

	9
	512
	Spike test

	10
	1024
	Top and Bottom Spike test (obsolete)

	11
	2048
	Gradient test

	12
	4096
	Digit Rollover test

	13
	8192
	Stuck Value test

	14
	16384
	Density Inversion test

	15
	32768
	Grey List test

	16
	65536
	Gross Salinity or Temperature Sensor Drift test

	17
	131072
	Visual QC test

	18
	261144
	Frozen profile test

	19
	524288
	Deepest pressure test

	20
	1044576
	Questionable Argos position test


3.11 Reference table 12: History steps codes

	Code
	Meaning

	ARFM
	Convert raw data from telecommunications system to a processing format

	ARGQ
	Automatic QC of data reported in real-time has been performed

	IGO3
	Checking for duplicates has been performed

	ARSQ
	Delayed mode QC has been performed

	ARCA
	Calibration has been performed

	ARUP
	Real-time data have been archived locally and sent to GDACs

	ARDU
	Delayed data have been archived locally and sent to GDACs

	RFMT
	Reformat software to convert hexadecimal format reported by the buoy to our standard format

	COOA
	Coriolis objective analysis performed


If individual centres wish to record other codes, they may add to this list as they feel is appropriate.

3.12 Reference table 19 : Data mode 

The values for the global attribute “data_mode” is defined as follows: 

	Value 
	Meaning 

	R 
	Real-time data. Data coming from the (typically remote) platform through a communication channel without physical access to the instruments, disassembly or recovery of the platform. Example: for a glider with a radio communication, this would be data obtained through the radio. 

	P 
	Provisional data. Data obtained after the instruments or the platform have been recovered or serviced. Example: for instruments on a glider, this would be data downloaded directly from the instruments after the glider has been recovered on a ship.

	D 
	Delayed-mode data. Data published after all calibrations and quality control procedures have been applied on the internally recorded or best available original data. This is the best possible version of processed data. 

	M 
	Mixed. This value is only allowed in the global attribute “data_mode” or in attributes to variables in the form “<PARAM>:DM_indicator”. It indicates that the file contains data in more than one of the above states. 


3.13 Reference table 20 : Sensor mount characteristics 

The <PARAM>:”sensor_mount” attribute indicates the way a sensor is mounted on a glider.

The following table lists the valid sensor_mount attribute values. 

	Sensor mount

	mounted_on_fixed_structure

	mounted_on_surface_buoy

	mounted_on_glider_line

	mounted_on_bottom_lander

	mounted_on_moored_glider

	mounted_on_glider

	mounted_on_shipborne_fixed

	mounted_on_shipborne_glider

	mounted_on_seafloor_structure

	mounted_on_benthic_node

	mounted_on_benthic_crawler

	mounted_on_surface_buoy_tether

	mounted_on_seafloor_structure_riser

	mounted_on_fixed_subsurface_vertical_glider


3.14 Reference table 21: Sensor orientation characteristics 

When appropriate, the <PARAM>:”sensor_orientation” attribute indicates the way a sensor is oriented on a glider.

The following table lists the valid sensor_orientation attribute values. 

	Sensor  orientation
	comment 

	downward
	Example : ADCP measuring from surface to bottom currents.

	upward
	Example : In-line ADCP measuring currents towards the surface

	vertical
	-

	horizontal
	-


3.15 Reference table 22: type of glider 

	Sensor  orientation
	Comment 

	coastal glider
	-

	open ocean glider
	-

	-
	-

	-
	-


4 Using the History section of the EGO netCDF Structure

Within the netCDF format are a number of fields that are used to track the progression of the data through the data system. This section records the processing stages, results of actions that may have altered the original values and information about QC tests performed and failed. The purpose of this document is to describe how to use this section of the format.

The next sections provide examples of what is expected. The information shown in the column labeled "Sample" is what would be written into the associated "Field" name in the netCDF format.

4.1 Recording information about the Delayed Mode QC process

The process of carrying out delayed mode QC may result in adjustments being made to observed variables. The table below shows how to record that the delayed mode QC has been done. Note that the fields HISTORY_SOFTWARE, HISTORY_SOFTWARE_RELEASE and HISTORY_REFERENCE are used together to document the name and version of software used to carry out the delayed QC, and the reference database used in the process. The contents of these three fields are defined locally by the person carrying out the QC.

Example: History entry to record that delayed mode QC has been carried out

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	CI
	Selected from the list in reference table 4

	HISTORY_STEP
	ARSQ
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	WJO
	This is a locally defined name for the delayed mode QC process employed. 

	HISTORY_SOFTWARE_RELEASE
	1
	This is a locally defined indicator that identifies what version of the QC software is being used. 

	HISTORY_REFERENCE
	WOD2001
	This is a locally defined name for the reference database used for the delayed mode QC process.

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	IP
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	FillValue
	This field does not apply (1)

	HISTORY_START_TIME
	FillValue
	This field does not apply

	HISTORY_STOP_TIME
	FillValue
	This field does not apply

	HISTORY_PREVIOUS_VALUE
	FillValue
	This field does not apply

	HISTORY_QCTEST
	FillValue
	This field does not apply


Note

(1) The present version of delayed mode QC only tests salinity and as such it is tempting to place “PSAL” in the _PARAMETER field. In future, delayed mode QC tests may include tests for temperature, pressure and perhaps other parameters. For this reason, simply addressing the software and version number will tell users what parameters have been tested.

4.2 Recording processing stages

Each entry to record the processing stages has a similar form. An example is provided to show how this is done. Note that reference table 12 contains the present list of processing stages and there should be at least one entry for each of these through which the data have passed. If data pass through one of these steps more than once, an entry for each passage should be written and the variable N_HISTORY updated appropriately.

Some institutions may wish to record more details of what they do. In this case, adding additional “local” entries to table 12 is permissible as long as the meaning is documented and is readily available. These individual additions can be recommended to the wider community for international adoption.

Example: History entry to record decoding of the data.

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	ME
	Selected from the list in reference table 4

	HISTORY_STEP
	ARFM
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	FillValue
	This field does not apply

	HISTORY_SOFTWARE_RELEASE
	FillValue
	This field does not apply

	HISTORY_REFERENCE
	FillValue
	This field does not apply

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	IP
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	FillValue
	This field does not apply

	HISTORY_START_PRES
	FillValue
	This field does not apply

	HISTORY_STOP_PRES
	FillValue
	This field does not apply

	HISTORY_PREVIOUS_VALUE
	FillValue
	This field does not apply

	HISTORY_QCTEST
	FillValue
	This field does not apply


4.3 Recording QC Tests Performed and Failed

The delayed mode QC process is recorded separately from the other QC tests that are performed because of the unique nature of the process and the requirement to record other information about the reference database used. When other tests are performed, such as the automated real-time QC, a group of tests are applied all at once. In this case, instead of recording that each individual test was performed and whether or not the test was failed, it is possible to document all of this in two history records.

The first documents what suite of tests was performed, and the second documents which tests in the suite were failed. A test is failed if the value is considered to be something other than good (i.e. the resulting QC flag is set to anything other than “1”). An example of each is provided. If data pass through QC more than once, an entry for each passage should be written and the variable N_HISTORY updated appropriately.

Example: QC tests performed and failed.

The example shown here records that the data have passed through real-time QC and that two tests failed. The encoding of tests performed is done by adding the ID numbers provided in reference table 11 for all tests performed, then translating this to a hexadecimal number and recording this result.

Record 1: Documenting the tests performed

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	ME
	Selected from the list in reference table 4

	HISTORY_STEP
	ARGQ
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	FillValue
	This field does not apply

	HISTORY_SOFTWARE_RELEASE
	FillValue
	This field does not apply

	HISTORY_REFERENCE
	FillValue
	This field does not apply

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	QCP$
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	FillValue
	This field does not apply

	HISTORY_START_TIME
	FillValue
	This field does not apply

	HISTORY_STOP_TIME
	FillValue
	This field does not apply

	HISTORY_PREVIOUS_VALUE
	FillValue
	This field does not apply

	HISTORY_QCTEST
	1BE
	This is the result of all tests with IDs from 2 to 256 having been applied (see reference table 11)


Record 2: Documenting the tests that failed

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	ME
	Selected from the list in reference table 4

	HISTORY_STEP
	ARGQ
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	FillValue
	This field does not apply

	HISTORY_SOFTWARE_RELEASE
	FillValue
	This field does not apply

	HISTORY_REFERENCE
	FillValue
	This field does not apply

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	QCF$
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	FillValue
	This field does not apply

	HISTORY_START_TIME
	FillValue
	This field does not apply

	HISTORY_STOP_TIME
	FillValue
	This field does not apply

	HISTORY_PREVIOUS_VALUE
	FillValue
	This field does not apply

	HISTORY_QCTEST
	A0
	This is the result when data fail tests with IDs of 32 and 128 (see reference table 11)


4.4 Recording changes in values

The PIs have the final word on the content of the data files in the Argo data system. In comparing their data to others there may arise occasions when changes may be required in the data.

We will use the example of recomputation of where the glider first surfaced as an example. This computation process can be carried out once all of the messages from a glider have been received. Not all real-time processing centres make this computation, but it can be made later on and added to the delayed mode data. If this is the case, we would insert the new position into the latitude and longitude fields and we would record the previous values in two history entries. Recording these allows us to return to the original value if we have made an error in the newly computed position. The two history entries would look as follows.

Example: Changed latitude

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	CI
	Selected from the list in reference table 4

	HISTORY_STEP
	ARGQ
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	FillValue
	This field does not apply

	HISTORY_SOFTWARE_RELEASE
	FillValue
	This field does not apply

	HISTORY_REFERENCE
	FillValue
	This field does not apply

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	CV
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	LAT$
	A new entry for reference table 3 created by institution CI to indicate changes have been made in the latitude.

	HISTORY_START_TIME
	FillValue
	This field does not apply

	HISTORY_STOP_TIME
	FillValue
	This field does not apply

	HISTORY_PREVIOUS_VALUE
	23.456
	This is the value of the latitude before the change was made.

	HISTORY_QCTEST
	FillValue
	This field does not apply


Notes

1. Be sure that the new value is recorded in the latitude and longitude of the trajectory.

2. Be sure that the POSITION_QC flag is set to “5” to indicate to a user that the value now in the position has been changed from the original one that was there.

3. Be sure to record the previous value in history entries.

It is also sometimes desirable to record changes in quality flags that may arise from reprocessing data through some QC procedures. In this example, assume that whereas prior to the analysis, all temperature values from 75 to 105 dbars were considered correct, after the analysis, they are considered wrong. The history entry to record this would look as follows.

Example: Changed flags

	Field
	Sample
	Explanation

	HISTORY_INSTITUTION
	CI
	Selected from the list in reference table 4

	HISTORY_STEP
	ARGQ
	Selected from the list in reference table 12.

	HISTORY_SOFTWARE
	FillValue
	This field does not apply

	HISTORY_SOFTWARE_RELEASE
	FillValue
	This field does not apply

	HISTORY_REFERENCE
	FillValue
	This field does not apply

	HISTORY_DATE
	20030805000000
	The year, month, day, hour, minute, second that the process ran

	HISTORY_ACTION
	CF
	Selected from the list in reference table 7

	HISTORY_PARAMETER
	TEMP
	Selected from the list in reference table 3 

	HISTORY_START_PRES
	75
	Shallowest pressure of action.

	HISTORY_STOP_PRES
	105
	Deepest pressure of action.

	HISTORY_PREVIOUS_VALUE
	1
	This is the value of the quality flag on temperature readings before the change was made.

	HISTORY_QCTEST
	FillValue
	This field does not apply


Notes

1. The new QC flag of “4” (to indicate wrong values) would appear in the <param>_QC field.

5 GDAC organization 

There are two GDACs (global data assembly centers) for redundancy, which are the users’ access points for EGO data. One GDAC is located in France (Coriolis, http://www.coriolis.eu.org), the other one in the USA (NDBC, National Data Buoy Center, http://www.ndbc.noaa.gov). The GDACs handle EGO data, metadata, and index files on ftp servers. The servers at both GDACs are synchronized at least daily to provide the same EGO data. 

The user can access the data at either GDAC’s ftp site: 

· ftp://ftp.ifremer.fr/ifremer/ego-gliders   

· ftp://xxx.noaa.gov/
From these root directories of the GDACs downward, the organization of the directories and files is:

· DATA/site/FileName.nc
site: EGO site code 

The sites codes will be listed in the “EGO catalogue” document at either GDAC’s root directory.

5.1 File naming convention 

The EGO file names use the following naming convention for data and metadata files. 

YYY/GL_XXX_YYY _ZZZ_T.nc 

· GL: EGO gliders prefix 

· XXX: deployment day YYYYMMDD 

· YYY: platform code from the EGO catalogue

· ZZZ: deployment code

· T: data Mode

· R: real-time data

· P : provisional data

· D: delayed mode

· M: mixed delayed mode and real-time.

· .nc : NetCDF file suffix

Example 

· PYTHEAS/GL_20100612_PYTHEAS_MooseT00_09R_R.nc 

This file contains observations and metadata from the Pytheas glider, from the Latex deployment performed in June 2010.

5.2 Index of glider deployments files 

To allow for data discovery without downloading the data files themselves, an index file is created at the GDAC level, which lists all available data files and the location and time ranges of their data contents: 

· The data index file is located at the root directory of the GDAC. 

· The index file contains the list and a description of all data files available on the GDAC. 

· There is a header section, lines of which start with # characters. 

· The information sections are comma-separated values. 

· Each line contains the following information: 

· file: the file name, beginning from the GDAC root directory 

· date_update: the update date of the file, YYYY-MM-DDTHH:MI:SSZ 

· start_date: first date for observations, YYYY-MM-DDTHH:MI:SSZ 

· end_date: last date for observations, YYYY-MM-DDTHH:MI:SSZ 

· southern_most_latitude, decimal degrees

· northern_most_latitude, decimal degrees

· western_most_longitude, decimal degrees

· eastern_most_longitude, decimal degrees

· geospatial_vertical_min, decibar

· geospatial_vertical_min, decibar

· update_interval: M monthly, D daily, Y yearly, V void 

· size: the size of the file in megabytes 

· gdac_creation_date: date of creation of the file on the GDAC, YYYY-MM-DDTHH:MI:SSZ

· gdac_update_date: date of update of the file on the GDAC, YYYY-MM-DDTHH:MI:SSZ

· data_mode: R, P, D, M (real-time, provisional, delayed mode, mixed; see reference table 19)

· parameters: list of parameters (standard_name) available in the file separated with blank

The fill value is empty: "". 

	GDAC data files index: EGO_files_index.txt 

	# EGO FTP GLOBAL INDEX 

# ftp://ftp.ifremer.fr/ifremer/EGO 

# Contact: http://www.EGO.org 

# Index update date YYYY-MM-DDTHH:MI:SSZ: 2008-03-30T18:37:46Z 

# 

#file,date_update,start_date,end_date, southern_most_latitude,northern_most_latitude,western_most_longitude,eastern_most_longitude, geospatial_vertical_min,geospatial_vertical_min,update_interval,size,gdac_creation_date,gdac_update_date,data_mode,parameters

PYTHEAS/GL_PYTHEAS_201006_R_LATEX.nc,2008-04-12T08:05:00Z,2007-03-17T18:07:00Z,2008-04-12T08:05:00Z,0,0,-170,-170,16.7,0,550,M,2008-04-12T08:05:00Z,2008-04-12T08:05:00Z,R,sea_water_pressure sea_water_temperature sea_water_salinity 


6 Data distribution
6.1 DAC to GDAC data distribution
The Data Assembly Centres (DAC) collect data from glider operators (real-time) or from scientists (delayed mode data).

In real-time, each DAC converts glider data into EGO-NetCDF files. It applies the real-time quality controls on the NetCDF files.

The DAC push these quality control data files to the Global Data Assembly Centres (GDACs).

The role of the GDAC is to distribute the best versions of EGO NetCDF files.
6.2 DAC to GTS data distribution
The EGO glider data received in real-time are quality-controlled. The real-time quality control procedures are described in the EGO glider quality control manual. They are automatically applied, without human intervention to minimize the delay between data observation and data distribution.

For each active glider, the data that passed the real-time QC tests are distributed on GTS (the WMO data transmission system). Data distributed on GTS should be less than 30 days old. The target for distribution is within 48 hours of the observation time.

TESAC format distribution

The vertical profiles extracted from the glider time-series are distributed as TESAC messages.

Each vertical profile should have a vertical length greater or equal to 40 decibars.

Buoy format distribution

The glider time-series are distributed as BUOY format messages.

BUFR format distribution

In a near future, the glider time-series will be distributed in BUFR format. The glider BUFR template is under construction.
7 Glossary, definitions

This chapter gives a definition for the EGO items described in this manual.

7.1 Observatory

An observatory is a facility that manages a series of gliders.
7.2 Deployment

The deployment is the period between the launch and recovery or loss of a glider.
7.3 Glider

A steered and autonomous platform deployed in the sea that performs environmental monitoring.

7.4 Sensor 

A device that measures environmental parameter but does not digitize data for transmission, it needs to be connected to an instrument to produce a data stream that a computer can read. Examples: Transmissiometer, Fluorometer, Oxygen sensor.

7.4.1 Parameter measured by the sensor

What was measured.
7.4.2 Calibration of the parameter measured by the sensor

Verification of Any operation measurement against independent measurements to derive a corrected value or a new parameter.
7.5 Principal Investigator (PI)

The Principal Investigator (PI), typically a scientist at a research institution, maintains the observing platform and the sensors that deliver the data. He or she is responsible for providing the data and all auxiliary information to a Data Assembly Center (DAC). 

7.6 Global Data Assembly Centre (GDAC)

The GDAC distributes the best copy of the data files. When a higher quality data file (e.g. calibrated data) is available, it replaces the previous version of the data file.
The user can access the data at either GDAC, cf. section “GDAC organization”. 

7.7 Data Assembly Centre (DAC)

The DAC assembles EGO-compliant files from this information and delivers these to the two Global Data Assembly Centers (GDACs), where they are made publicly available.

EGO gliders data management



User’s manual

